Characteristics of Power System Transients

November 30, 2004

Thomas Grebe Electrotek Concepts, Inc.

Introduction

- Characterizing Transient Disturbances
- Sources of Power Quality-Related Transient Disturbances
 - Example Waveforms
- Several Transient Problems and Solutions
- Using Measurements to Characterize Transients
- Using Simulations to Predict Transients
- Additional Information

Power System Transients

- Sudden changes in the electric power system are called transients. All transients are caused by one of two actions:
 - 1. Connection or disconnection of elements within the electric circuit.
 - 2. Injection of energy due to a direct or indirect lightning stroke or static discharge.
- Transient overvoltages and overcurrents are classified by *peak magnitude*, *frequency*, and *duration*.

Characterizing Transient Disturbances

Transient Oscillations:

- Oscillatory
 - » Low Frequency less than 300 Hertz
 - » Medium Frequency 300 Hz 2 kHz
 - » High Frequency 2 kHz 5 kHz
- Characterized by waveform data points
- Transient Impulses:
 - Unidirectional
 - Less than 200µsec in duration
 - Frequency components greater than 5 kHz
 - Characterized by magnitude and duration

How do Transients Propagate?

- High frequency transients do not propagate over long distances:
 - this is a good reason for separating sensitive loads and disturbing loads
- Local resonances can cause oscillations remote from the transient source:
 - can be particularly important for transients caused by utility capacitor switching
- Lower frequency transients will appear throughout the system/facility:
 - capacitor switching transients are usually less than 1 kHz

Transients vs. Harmonics

- Sudden changes in the power system.
- Classified by peak magnitude, frequency, and duration.
- Steady-state distortion of the waveform.
- Periodic and continuous in nature.

Electrotek Concepts, Inc.

Transients vs. Harmonics - continued

Electrotek Concepts, Inc.

Sources of Transient Disturbances

- Power Quality-Related Sources of Transient Voltages and Currents:
 - Lightning
 - Load Switching
 - Transformer Switching
 - Ferroresonance
 - Capacitor Switching
 - Voltage Notching (rectifier switching)
 - ASD Motor Transients (inverter switching)
 - And many others...

Lightning

- Lightning transients are caused by the injection of current impulses into the system.
- High frequency, high magnitude transients can propagate on the system and into customer facilities.
- A direct stroke to a distribution line will cause the voltage to rise rapidly, resulting in an arrester operation or line flashover.
- Fast wavefronts can couple through transformers by capacitance ratio, rather than turns ratio
 - High rate-of-rise can cause failures in power electronic equipment (e.g., SCRs, etc.)

Simulated Lightning Current Waveforms

Source: PSCAD

Electrotek Concepts, Inc.

Load Switching

- High-frequency transients are often initiated by some type of switching event.
- Circuit switching (de-energizing) and inductive loads cycling on-and-off (contactors) can produce a burst of high frequency impulses.
- Most high frequency transients occurring within customer facilities do not have significant energy associated with them (e.g., less than 1 Joule). This means that equipment can often be protected with simple surge protection devices.

Measured Load Switching Waveforms

Electrotek Concepts, Inc.

Source: Dranetz-BMI 658

Transformer Switching

- When a transformer (device with magnetic core) is energized, a transient inrush current flows:
 - current interacts with the system impedance to create a voltage waveform that can have significant harmonic components (> full-load current by a factor of 8-10)
 - may excite local resonances (cables, capacitors), causing dynamic overvoltages
 - current typically decays in several seconds
 - characteristic of the current is determined by:
 - » magnitude of input voltage at the instant of energization
 - » residual flux in the core
 - » impedance of the supply circuit

Measured Transformer Energizing

Electrotek Concepts, Inc.

Ferroresonance

- Ferroresonance is a term generally applied to a wide variety of interactions between capacitors and ironcore inductors that results in unusual voltage and/or currents.
- Several of the more common causes include:
 - single-phase cutouts / single-phase reclosers
 - fuse blowing or opening (transformer or line fuse) (or a lineman pulls an elbow connector)
 - manual cable switching to reconfigure a cable circuit during an emergency condition
 - three-phase switch with large pole closing span

Measured Ferroresonance Waveform

Source: D-BMI 8010 PQNode

Electrotek Concepts, Inc.

Simulated Ferroresonance Waveform

Electrotek Concepts, Inc.

Simulated Ferroresonance Waveform

Electrotek Concepts, Inc.

Capacitor Switching

- Capacitor Bank Energizing Transient:
 - The voltage across a capacitor cannot change instantaneously.
 - The step change in voltage when a capacitor bank is energized results in an oscillation between the capacitance and the system inductance.
- Typical Magnitudes: 1.2 – 1.7 per-unit (x normal)
- Typical Frequencies:

250 – 1000 Hz

$$f_{s} = \frac{1}{2\pi\sqrt{L_{s}C}} \approx f_{system} \star \sqrt{\left(\frac{X_{c}}{X_{s}}\right)} \approx f_{system} \star \sqrt{\left(\frac{MVA_{sc}}{MVA_{r}}\right)} \approx f_{system} \star \sqrt{\left(\frac{1}{\Delta V}\right)}$$

Electrotek Concepts, Inc.

Measured Capacitor Bank Switching

Electrotek Concepts, Inc.

Simulated Capacitor Outrush Current

Electrotek Concepts, Inc.

Measured Capacitor Energizing Voltage

Electrotek Concepts, Inc.

Measured Capacitor Energizing

Electrotek Concepts, Inc.

Measured Capacitor Switch Restrikes

Electrotek Concepts, Inc.

Voltage Notching (Rectifier Switching)

- Voltage notches are a special case that falls in between transients and harmonic distortion.
- Natural result of commutation in power electronic devices:
 - Notching of the input voltage waveform is a normal characteristic of the switching that occurs in the power electronics of a rectifier during continuous current operation.
- High frequency components.
- Additional zero crossings cause timing problems.

Measured Customer Voltage Notching

Electrotek Concepts, Inc.

Simulated Feeder Voltage Notching

Electrotek Concepts, Inc.

Motor Transients (Inverter Switching)

- Voltage reflections (up to 2 per-unit) at the motor terminals can cause insulation failure. Quantities that impact the voltage include:
 - PWM switching frequency
 - cable length
 - damping
- Possible solutions to ASD motor transients:
 - Change cable length (not practical, and may not eliminate transient)
 - Change PWM frequency (not practical, and may not eliminate transient)
 - Surge capacitors across motor terminals
 - Line reactors ("chokes") at the drive terminal (sizing may be a problem)

Measured PWM ASD Output Voltage

Source: Fluke 97

Electrotek Concepts, Inc.

Measured Motor Terminal Voltage

Electrotek Concepts, Inc.

Other Transients: CLF Operation

Electrotek Concepts, Inc.

Other Transients: Arcing Fault Current

Electrotek Concepts, Inc.

Other Transients: Arcing Fault Current

Electrotek Concepts, Inc.

Other Transients: Arc Furnace Current

Electrotek Concepts, Inc.

Transient Problem/Solution #1

Adjustable-Speed Drive - Voltage Notching:
400 HP dc Drive Current and Voltage Waveforms

Bus Side of Input Reactor

Transient Problem/Solution #2

- Capacitor Switching Transient Voltage:
 - Control transient by switching when the voltage is approximately zero (synchronous closing control).

Source: EMTP

Transient Problem/Solution #3

- Capacitor Switching dc Bus Overvoltage:
 - Control transient by adding inductance (choke) on the ac side of the adjustable-speed drive.

Measurements to Characterize Transients

 Using tools (e.g., PQView) to characterize transient voltages and currents.

Oscillatory Transient Magnitude versus Duration

Simulations to Predict Transients

Electrotek Concepts, Inc.

Additional Information

- Electrotek provides consulting services related to transient and harmonic studies using tools such as PSCAD, EMTP, and SuperHarm.
- Additional Information:
 - Electrotek (studies, training, and seminars): <u>http://www.electrotek.com/</u>
 - PQSoft (simulation and analysis tools and support): <u>http://www.pqsoft.com/</u>
 - Monitoring service: <u>http://www.powermonitoring.com/</u>
 - Monitoring instruments for capturing transients: <u>http://www.dranetz-bmi.com/</u>