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Abstract

This paper shows a methodology using the Hartley transform for the analysis of harmonic
propagation in electrical networks under nonsinusoidal conditions, considering linear and
nonlinear elements. At first linear elements are analyzed and a linear Norton equivaent is
obtained from nonlinear elements.

Keywords. Hartley Transform, harmonic propagation, nonlinear power circuits, periodical
steady state, power quality analysis.

I ntroduction

Voltage and current waveformsin electrical power systems are frequently nonsinusoidal.
The harmonics generation , propagation, effects and solutions have been the principal
objectives of Power Quality [1]. Electric Power Quality has six main aspects. Modelling
and analysis, instrumentation, sources, solutions, fundamental concepts and effects.

This paper takes place in modelling and linear analysis using the Hartley Transform
extended to the nonlinear behavior, taking advantage of its principal characteristic of
being of real nature. Other properties of the Hartley transform are [2][8]:

Exist when the Fourier Transform exist and vice versa.

It can be obtained from the Fourier Transform.

The convolution is similar as using the Fourier Transform if one of the two signalsis
even or odd.

The Fast Hartley Transform is twice as fast and needs half the memory than the
Fourier Transform.

TheHartley Transform
The Hartley Transform of the function f(t) is:

¥
H(n) = O (t)cas(nt)dt (1)

¥
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¥

£(t) = OH(n)cas(nt)dn )

-y
where cas(q)=cos(q)+sin(q) and n=2pf isthe angular frequency in rad/sec.

Equation (1) is the Hartley Transform of f(t) and (2) is the Inverse Hartley Transform of
H(n).

A. Discrete Hartley transform
The Discrete Hartley Transform is expressed as.

-1
H(kDn) =%a V/(iDT)cas(ikDnDT) k=0,1,..,.N-1 (3)

i=0

-1
V(KDT) = @ H(iDn)cas(ikDnDT) k=0,1,..,N-1 (4)

i=0

where (3) isthe Discrete Hartley Transform of V(t) and (4) isthe Inverse Discrete Hartley
Transform.

Where:
N number of pointsin the sequence.
Tiota total time per cycle (example for 60 cycles, Tiota = 16.67 ms.)
DT = Jod time resol ution.
N

2 .
Dn = Dw = —— frequency resolution.

NDT

giving The Fast Hartley Transform (FHT) [2,3].

B. The Hartley series
The Hartley series are defined as.

%
f(t)= A Sycas(nnt) (5)
n=-¥
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Where:

1 T/\2
S,=7 O @casni)ct (6)
-T/2

the Hartley series coefficients have the following properties:

TABLE I: Coefficient properties.

f(t) Coefficient
S

Even: f(t)=f(- | Sy=Sa

t)

Odd: f(t)=-f(- | Sy =-Sn

t)

Behavior Of Elements Under Non-sinusoidal Conditions
In general, the load voltage and current under non-sinusoidal conditions are represented
by:

W0 = AV, castmn) @)
m=-¥
3

i(t)= A I,cas(nnt) 8)
n=-¥

where n=m if the load islinear, and nt m if the load is nonlinear.

A. Linear elements response

Passive elements response (resistors, inductors and capacitors) in nonsinusoidal conditions
isgiven by:

Resistor (R) voltage

$
Vg =Ri(t) = A RI,cag(nnt) 9

n=-¥

Inductor (L) voltage

' $

Vg = L& = @ Lnnl cag(- nnt) (10)
dt n=-¥

Capacitor (C) voltage
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¥
Ve =20z & 1 cast- nnt) (12)
C ey CNN

where the voltage will have the form (7). In matrix form (9), (10), and (11):

¢ U w ue 0

e ue Gé G

VR.2U & 0 ud.

é (T -~ gé

eVr-10 ¢ aé-10 (12)

Vgo 1= s, U

é'R0O (1" a Géouq

éy ., U @ ug, u

K i€’ G

&V, U e O udly d

e, ue -~ rUE .U

é: 0 ¢ ue: 0

e ue ue 0

é u a ué u

&Vpue 0 2k el s

é ua ea ~ aé u

eViaa e n aé-10 (13)
u_e ué u

gVLo 0" e 0 uéou

é 0 a 0. U

e " 08, ¢

&vi, e -2 0 aél, a

é. Ue. - gé  a

eg: 0 e ueg:a

é: u é Suéu

é ua é ué u

epi e O e 640 (14)

e u e ue u

&Ve.1a e -¥e ad.10

&, G_é ae a

Voo o7a ¥ 680 g

é a é ug u

2/010 é %C L’ngu

Ve, U & Hoe ue; d

e a e - aée

é: 0 & age:a

in generd the Hartley impedance matrix could be represented by (15).

R
2X

(15)

-2X

by
oo ooooooooc

D M M M D D D D D D O

The matrices (12), (13), (14) y (15) do not have harmonic coupling because current and
voltage have the same number of harmonics.

B. Linearization of nonlinear elements[4].
The nonlinear element response is given by the nonlinear equation (16):
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y =f(x) (16)

where x(t) and y(t) are periodic functions represented by:

é

x(t) = a Xcas(hnt) (17)
h=- ¥
é

y(t) = a Ycas(knt) (18)
k=-¥

If (16) isdifferentiable, then it is represented by:

Dy = f'(x,)Dx (19)
Where:
$
Dx= @ DX cas(hnt) (20)
h=-¥
$
Dy = @ DY, cas(knt) (21)
k=-¥
$
f'(xe) = @ C;cas(int) (22)

i=-¥

substituting (20), (21) and (22) into (19):

¥ ¥ ¥

& OV cakny) =~ & & C DX [cas(i +hynt + cas(i - hynt
k=-¥ i=-¥ h=-¥
+cag(- i +h)nt - cas(- i - h)nt]

(23)

Taking h=j and grouping terms for the same harmonic, (23) will be:
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6:u ¢ U é . o é . u é . o
e a ¢ d € d € u € u
DYal iy gy gty gy
e u Y - Y . ~ . ~ -
abY.1g  &.pjd &1 8 &y U &y 4 (24)
a q 18 a 16 a 16 a 16 a
ePYo =, &C0.j DX+ o, DX +- &Cq,; DX -~ €&Co. j DX,
) q 2é a 2¢ a 2¢ a 2¢ G
éDYl a éCl—j a éC1+j a éC_1+jU éc_l_jﬂ
oy, & & & &
a 24 &g &Coyj U &Co4j0 & ju
e a €. 0 e . e . e .
e : u e : u e : u e : u
kK i=k- =K+ | P=-k+] i=-k- |
Grouping (24) :
8 ut :
eDY o0 Li2pl
DY, g°-2i) (25)
e u x -
eY1g Loy
&, ut :
&PYo =L DX,
ey, U & :
&M g Lay
epy, a $ :
e 2u Ll
ef g g
Where:
1
Cwkh = E(Ck+h +Ck-h + C-ksh - C-ken) (25.9)
for al termsof h, (25) is represented by (26)
€1 Ug. e
e Ue &
ZDY-ZLJ & Crz-29 Ce2-n Cr20 Cr2np Cr22 ng-zlJ
u a u
c:eDY.u} 2'- Ci1-29 Cri-y Crio Cr1y Criz @Dx.lg
D =8 Co.p Co-y Coo Cony Coa KXoy
ovide Cuz Cupy Caog Cany  Cap "-£DX1 d
e .
ey, i e Ce.a Ce-y Ceo  Cey Cezy  EDX, U
e " ug : N g
e : u u
(26)
insmple form
DY =FDX (27)

Where:

DX : isformed by the series coefficients of (20) usingthe FHT.
DY : isformed by the series coefficients of (21) usingthe FHT.
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F: isformed by the series coefficients of (22) using the FHT, and is not a full matrix,
depending of the number of harmonics to be analyzed. It isreal and symmetric.

if (22) is even then (26) is

g : 0 é- U ® :ou

SRS : @ a

g g T Ca Co 20 (27.9)
ev,ié. C C C, C, (DX _, U :
é 0u_a e U

Dogs G G G Cu C, EDX g

éDY, u & C, C C C, -.@bX a

°py, U é G ¢ G .'~l;€'DX2 u

e . ue . . e .y

é: 0é : . LI

if (19) islinearized around (X , Y ) Where DX=X-X, and DY=Y-Y}, then (27) isgiven
by:

Y=FX+Yy (28)
Where;
Y=Y -FXp (29)

C. Useof (28) and (29) to represent the saturation current of an inductive element
The saturation current of an inductive element is represented by the nonlinear equation:

i=f( ) (30)
Applying (28) and (29) to (30):
| =FY +1, (31)

=1, - FY, (32)

V=Y =DY (33)

2n

(34)

-2n

O
I

@D M D M D D D D D D D
o

oo oooooo oo
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substituting (33) into (31) and (32)

| =BV +l, (35)
=1,- BV, (36)
where B=FD™ has the same characteristics of F.

Equations (35) and (36) represent the Norton equivalent of Figure 1.

[X]

Fig. 1 Norton equivalent

Linear Solution To The Harmonic Propagation Problem

The current injection method works for linear network models. Near the harmonics
sources the injection current waveform is known; and the harmonic propagation problem
is solved by superposition, solving for each harmonic asis shown by the next system of
linear equations [5]:

|h:Yth (37)
Other method is to obtain the equiva ent impedance for each harmonic between the node

with a harmonic source and the node where the effect of the harmonicsis to be
determined. Figure 2 shows this method [6]:

Z(w)

v(t)

i(t)
Fig. 2 Flow diagram, linear solution of harmonic propagation.

Iterative Solution To The Harmonic Propagation Problem
Representing the electric network by two equivalents asin Figure 3.

10
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linear network nonlinear networ
> L

Vin -

Fig. 3 Electric network equivalent.
the linear network portion is represented by Hartley admittances and the nonlinear
network by Norton equivalents.

The solution method is based in Figure 4.

L DV I

RS

Fig. 4 Equivalent network[7] for the iterative process.

If in each iteration (35) and (36) are considered (which represent the Norton equivalent)
Ip=I and V=V, this means linearizing in each iteration, then the current | can be obtained
from (30) using (33). The matrix B can be used only, to speed up convergence to the
solution.

Proposed method:

1. Obtain (from aload flow study at fundamental frequency) the voltage V (t), where the
linear and nonlinear network are joined.
Obtain V(n) using the FHT.
3. Compute I (N)=Y (N}{V(n)-V(n)}
4. Cdculate Iy (t)
a Computej (n)=D*V(n)
b. Obtainj (t) using the IFHT
c. Obtain In ()=f(j (1))

N

] K

INL

11
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Iy (E+D)- 1y (1)

d. Obtan f'(t)=— _
j (t+Dt)-j (1)

e. Obtain F (n) using the FHT, and build F.
f. Obtain B=FD™

Obtain Iy (n) using the FHT.

Compute D [(n)=I,(n)+Ix.(n)

Compute D V(n)={Y.(n)+B}'DI(n)

Obtain the new value of V(n)=V(n)-DV (n)

Obtain V(t) using the IFHT.

10 Back to the point 3 if ¢cDV(n) ¢ce

©oo N O

In the above method it is sufficient to compute only once matrix B because in each
iteration it has minor changes.

Other simplifications are obtained when the nonlinear network introduces alow distorsion
grade, then point 7 can be substituted by DV (n)=Y (n)™ D I(n), and the same solution is
obtained with no more than two extra-iterations, without making necessary the
construction of matrix B.

Results

A. Linear method (current injection method)

MATLAB® was used to implement the flow diagram of Figure 2, a distribution network of
8 nodes [6], Appendix A, is used to compute the voltage waveform that appears at node 1
caused by a harmonic current injection in node 8.

alt %
0.1 83333 12500 12505

| 41667 41717 t g

-0.1

Fig. 5 Current injection waveform in the node 8.

12
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3

Z,s(kDn)

20

1L

0

-1p

-2

-3

0 50 100 150

kDn
Fig. 6 Hartley transform, impedance Z;s

V()

b)

Fig. 7 Voltage in the node 1, 8) Harmonic components caused by the current injection at
node 8. b) Harmonic components plus fundamental frequency of 60 Hz.

B. Iterative method
The proposed method was used to compute the current response of a nonlinear circuit:

13
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.
v(t) () it) /g

Fig. 8 Nonlinear circuit

where the nonlinear element response is given by:

() =1 ’zﬁloo(j + %)

Figures 9 and 10 show the current i(t) response under different voltages v(t), SSIMNON
was used to compare results.

x10°

it °
15

1

0.5

0

0.5

1

-1.5

2
0 1 2 3 4 5 6

a) with matrix B, 12 iterations.

x107

i(t) 2
15

1

0.5

0

-0.5

-1

-1.5

2
0 1 2 3 4 5 6

b) without matrix B, 3 iterations.

Fig. 9 v(t)=cos(wt), using the proposed method.

14
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I(t) 0.02,
0.015-

0.01f

0.005(

-0.0051

-0.01f

-0.015-

-0.02O
1 2 3 4 5 6

a) with matrix B, 5 iterations.

I(t) 0.02
0.015

0.01

0.005

-0.005

-0.01

-0.015

-0.02
0 1 2 3 4 5 6

b) without matrix B, 5 iterations.

Fig. 10 v(t)=2cos(wt)+cos(3wt), using the proposed method.

i(t)

0.001-

-0.001-

1 B 3 3 5 &

Fig. 11 v(t)=cos(wt) using SIMNON

i®

0.0

N

T T T T T
1 z 3 4 &

Fig. 12 v(t)=2cos(wt)+cos(3wt), using SIMNON

15
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Conclusions

It was showed that the Hartley Transform can be used to to represent nonlinear
elements as a linearized Norton equivalent.

The electric network is represented by real numbers only.

The matrices dimensions are the same than using the Fourier transform, with the
advantage of working with real instead of complex matrices.

The B matrix is the only one that has shows harmonic coupling and has a (2h)x(2h)
dimension, where h is the number of harmonics to be considered. If B is builded in the
Hartley domain it isarea and symmetric matrix.
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Appendix A
The test system used is shown in Figure 13, N = 150 and Tota =16.6 ms were used.
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4

I~ transformer

I

model

AV__JM‘

T1o

Fig. 13 Disribution circuit

TABLE II: Impedance datain p.u of the distribution circuit, (h=1 for 60Hz).

branch branch branch
value value value
1-6 2-0 5-0
0.001+jh0.01 1 1
1-4 3-0 6-8 -
0.001+jh0.01 2 j200/h
1-0 - 3-0 - 6-7
j50/h j100/h 0.01+jh0.1
1-0 4-5 6-0 -
0.1+jh0.1 0.001+jh0.001 j40/h
2-3 4-0 - 7-8
0.001+jh0.01 j50/h 0.01+jh0.1
2-6 4-0 7-0
0.001+jh0.01 1 100
2-0 - 5-6 7-0
j50/h 0.001+jh0.01 jh10
5-0 - 8-0 -
j100/h j40/h

17



Tech Notes Issue #98-1

Biographies

Manuel Madrigal Martinez. Was born in Purépero Mich; México in September 7, 1969.
He received his B.Sc. in EE with honors at the Instituto Tecnol6gico de Moreliain 1993.
He obtained the “ Adolfo Lopéz Mateos’ award by the DGIT (Genera Direction of Tech.
Institutes). He received his M.Sc at Doctora Program in Electrical Engineering at
Universidad Auténoma de Nuevo Ledn in 1996. At present hi is Professor of the Electric
and Electronic Department at the Instituto Tecnoldgico de Morelia.

Salvador Acha Daza. Was born in Uruapan, Mich; México. He received his B.Sc. and
M.Sc. in Electrical Engineering at Universidad Michoacana de San Nicolés de Hidalgo and
ESIME of Instituto Politécnico Nacional, respectively. He holds a Ph.D. from University
of Texas at Arlington, 1988. He has been Professor since 1970 and has worked with CFE
in the National Energy Control Center from 1977 to 1979.

He was Director of the Electrical Engineering School of the UMSNH and has tought in
the Inst. Tec. de Morelia. His principa interests are in modelling and analysis of power
systems, the efficient operation and control of electric power systems.

18



Under standing Wavelet Transforms
Surya Santoso
Senior Power Systems Engineer
Electrotek Concepts

Abstract

The purpose of this paper isto introduce the so-called wavelet transforms and their basic
propertiesto PATH members. In preparing this paper, no prior knowledge of wavelet
theory is assumed, but the Fourier transform only. The presentation of the paper starts off
with the familiar Fourier transform, and followed by the mathematical signa
representation, before detailing the wavelet transform. The message in this paper is that
the wavelet transform is a complementary tool to analyze transient or non-stationary
signals, and it is not intended to replace the well-established Fourier transform in analyzing
stationary (steady state) signals. Various applications of waveletsin power systems are
summarized in this paper.

I ntroduction

Wave et analysis has been a popular signal analysis technique in recent years. It has
opened up new avenues of research and applications in various areas. For example,
wavel et transforms have been extensively used in signal processing community for data
and image compressions, feature extractions, non-stationary signal analysis, and speech
and image processing to mention afew. In mathematics, wavelet transforms have been
utilized to solve complex linear agebra problems and pseudo-differential equations, and
have been closely tied to the approximation theory. Wavelet analysis has also been very
useful in fluid dynamics and turbulence studies. Various applications in other areas such as
biomedical signa analysisto vibration analysis have benefited from the wavelet analysis as
well.

In power systems analysis, wavelet transforms have started to gain popularity. There are
approximately half a dozen papers published in IEEE Transactions on Power Delivery to
date. These papers largely deal with transient analysis and power quality event detection.
Asin other areas of applications, the applications of wavelet analysisin power systems
have been enthusiastic since it solves some problems that previously cannot be solved
using Fourier-based techniques. However, it should be noted that the wavelet transform is
not intended to replace the Fourier transform. It is a complementary tool to the Fourier
transform in signal analysis. Both transforms have their own unique strengths in solving
engineering problems. Their strengths are tied with their mathematical properties; thus,
some problems are better solved with one technique but not with the other.

In this article, the wavelet transform will be explained from a novice point of view;
however, some basic familiarity with the Fourier transform is assumed. Properties of the
wavelet transform will be discussed as well as the difference between the wavelet and
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Fourier transforms. Current and potential applications of wavelet analysis on power
quality are also reviewed.

Mathematical Signal Representations

In many engineering problems, measurements are often taken with respect to time, spatial
location, a combination of both, or some other physical measures. This suggests that
measurements are taken in specific domains. For example, in power quaity analysis,
voltage and current variations are taken with respect to time resulting in voltage and
current waveforms in the time domain, respectively. In other area of studies such asin
aerodynamics, longitudina velocity of aturbulent supersonic flow is measured spatially,
resulting in a spatia velocity profile at a particular time instant in the spatial domain. For
both cases the signals are voltage and current waveforms and spatia velocity profile,
respectively.

Measured signals carry information associated with the physical nature of the system.
However, the information or signal characteristics may not be evident because they may
not be located in the measured domain, i.e., the time or spatial domains. Therefore, in an
attempt to reveal signal characteristics, a given measured signal is often represented in a
domain in which the information resides.

From this point on, we will use a voltage waveform as an example of our signa. Since
voltage is measured with respect to time, it is also called a voltage time-series. Figure 1
below shows a voltage notching waveform in the time domain that was recorded using a
power monitor.

il

Figure 1. Voltage notching waveform in the time domain recorded using a power monitor.
The measured signal isindeed a voltage time-series, i.e., voltage vs. time

Given atime-domain signal shown above and without a prior knowledge in power quality
and harmonics, it would be difficult to describe what the signal is all about. Oftentimes, a
Fourier transformation is performed to reveal its frequency components. By doing this,
we should say that atime domain signd (i.e., the voltage time-series) is represented in the
frequency domain. The objective of signal representationsisto reveal information or
specific signal characteristics that may reside in particular domains. In this case, the
information of interest resides in the frequency domain, and the Fourier transform is the

20
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bridge connecting the two domains. This example is a specia case of the well known time
domain signal representation using the Fourier transform.

In the following, we will present a more general case of signal representations. Let x(t)
be a given signa measured in thet domain and let there exist a transformation kernel
g,(t) . We now wish to represent the t domain signal x(t) inthe udomain. The bridge

connecting the two domains is the aforementioned function g, (t) . Aninner product is
used as avehicleto represent signal x(t) inthe udomain. Aninner product is defined as
follows:

F(u) = (x(1), 9,(1)) = Ox(D)g. (D), (1)

where g, (t) isacomplex conjugate of g,(t). F(u)isindeed signa x(t) in theu domain.

In the Fourier transform case, x(t) isin the time domain and the transformation kernel is
g,(t) =e®". Thus, the frequency domain signal of x(t), F(f),isasfollows:

F(f) =<x(t),ej2p“> = O(be Pt . 2)

Reader should easily recognize that Eq. (2) isthe familiar Fourier transform. The above
Fourier’s transformation kernel is a sinusoida function that is characterized by frequency
or number of cycles per second.

The Fourier transform is especidly suitable in analyzing stationary signals (signals whose
properties do not change in time) because the building block of such signals are
characterized by frequency which is also the characteristic of the Fourier’ s transformation
kernel. Thus for such signals, the Fourier transform is the most appropriate tool to use. In
the next section, we will show another variant of the Fourier transform and the wavel et
transform and discuss their properties.

3. The Short-time Fourier Transform

It is not uncommon to come across signals that are non-stationary, i.e., properties of the
signal change with time. Well-known examples for such signals are transients, intermittent,
and impulsive signals. These signalsin power systems are typically originated in power
quality disturbances. The Fourier transform is generally not suited for analyzing non-
stationary signals because the desired information is located in both time and frequency
domains. For such signals, local characteristic changes are not well represented, and the
corresponding information is spread out over the entire frequency domain. Thisis obvious
because the Fourier transform as shown in Eq.(2) does not provide temporal information.

21
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Another example of asignal representation that includes time and frequency
representations is the short-time Fourier transform. This transform is intended to alleviate
the non-local problem; thus, the time-dependent variable is introduced into Eq.(2). The
non-stationary signal x(t) is multiplied with an appropriate window function w(t) centered
at temporal location t. The resulting signal is then assumed stationary within the window
and Fourier transformed. Such a transformation is known as a short-time Fourier
transform shown below:

Xager (F,1) = OK(OW (t- t)e *"dt, ©)

where the basis function is g, ; (t) = w(t - t )e'*" . In other words, X (f,t) isthe

Fourier transform of x(t) windowed with w(t) shifted by t. This modified version of the

FT has the capability to provide atime-frequency description of the signal. In addition,
note that the time-support of the window function w(t) is constant for al frequencies, and

the basis function g, ; (t) = w(t - t )e'*" isin fact a constant-width modulated function

with frequency f. Thus, once the window function w(t) has been chosen, the analysis

resolution in time and frequency domainsis constant. Asaresult, the ability to capture the
dynamic of the signal characteristicsis greatly dependent upon the choice of the window
function w(t).

4. TheWavdet Transform

In both Fourier and short-time Fourier transforms, the transformation kernels are
characterized by frequency. A different method to analyze non-stationary signals that
does not use frequency is the wavelet transform. The wavelet transform seeks to represent
atime domain signal in the time-scale domain. For this reason the wavelet transform
anaysisistechnically caled time-scae signa analysis.

In the time-scale signal representation, a given time domain signal x(t) is represented by
an inner product with a wavelet, thereby the wavelet transform. It is defined as follows:

W,(a,t) = (X(1),Y . (1) = OX(A) & (D)ct, @
where y . (1) is
y . ()= 2y ?Ttg (5)

y (t) isamother wavelet whereas al R,a! Oisthe dilation or scale number, andt T R

isthe time-shift parameter. Risareal continuous number system. The asterisk denotes a
complex conjugate operation.
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By comparing Egs. (2), (3), and (4), it should be clear now that the fundamental difference
between Fourier-based transforms and the wavelet transform isin their transformation
kernels. Thisfundamental difference leads to a substantial implication in the use of the
two transforms (i.e., Fourier and wavelet). As we have pointed out earlier the Fourier
transform is better able to analyze stationary signals, and we shall see later, the wavel et
transform is better able to analyze non-stationary signals.

Unlike a sinusoidal function which oscillates forever, awavelet function isa*“small” wave
that oscillates for a*short” period of time. Mathematically, afunction is called a wavelet if
it satisfies the following condition:

¥
O (OHdt=0. (6)
-¥

In other words, a wavelet is a zero-mean function and must decay to zero at + ¥ .

The smplest function that can be called a wavelet is a square function as shown in Fig.
2(a). Thiswavelet is called Haar wavelet. It is defined as follows:

y (1) =1 0£t<05 @)

=-1 05£t<1

The above sguare function oscillates for one cycle only, and it satisfies Eq. (6) because the
area under the square function is equal to zero, or it is zero-mean. A sinusoidal function is
certainly not awavelet because it is not a small wave (its value does not decay to zero at
+ ¥ ), athough the area under the sinusoidal function is zero.

The attributes of awavelet transform are dilation and trandation. When awavelet is
dilated, its width gets wider but its magnitudes get smaller. Using Eq.(5), let us assume
that the dilation factor of the Haar wavelet in EQ.(7) is a=1 or scale 1, and let it be the
mother wavelet. Thus at scale 2 (a = 2), the Haar wavelet now becomes

Y ,o(t) = %y (%) . Similarly, the Haar wavelet at scale 3isy ,,(t) = %y (%) . Figure 2b

and 2c show the Haar wavelet at scales 2 and 3, respectively. As one can seeg, the time
support iswider at higher scales, which means the corresponding wavelet loses its time
resolution, however, its frequency resolution is now better because of the Heisenberg
uncertainty principle. Thus at lower scales, the wavelet transform has a better time
resolution, whereas at higher scales, it has a better frequency resolution. Thisis the reason
why wavel ets are more suitable to analyze transients or non-stationary signals.

23



Tech Notes Issue #98-1

Title:

squarea.eps

Creator:

MATLAB, The Mathworks, Inc.
Preview:

This EPS picture was not saved
with a preview included in it.
Comment:

This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Figure 2: The simplest possible wavelet, a square function. (a) A square function at scale 1, (b) and (c) are

1 1
scales 2 and 3 of the wavelet function. Their amplitudes are ﬁ and ﬁ , respectively.

The Haar wavelet is not widely utilized because of its discontinuity. However, there are
many other wavelet functions that are more useful and widely utilized: Morlet wavelet,
Mexican hat wavelet, Daubechies wavelets, etc.

Another attribute of the wavelet transform is trandation or time-shift. In this case a
wavelet function istrandated acrosstime t for every scale number a. Figure 3 illustrates
apictoria dilation and trandation procedure in the wavelet transform. The wavel et
function is a Mexican hat function for its resemblance to a Mexican hat. A hypothetical
sgna x(t) isfirst windowed by awavelet at sclle a=a, att =0. This a =a, wavelet

then sweeps the entire signal x(t) . In the upper right of Fig. 3, it isshown thata = a,
wavelet at t =t location. The same procedure is then repeated for a = a, wavelet. The
lower right of the figure showsthat a =a, waveletat t =t location. Note that
a=a,wavelet isadilated version of a = a, wavelet.
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Figure 3. A pictorial operation of the wavelet transform; its transformation kernel is based on translation
and dilation.

5. Continuos and discrete wavelet transfor ms

Based on the dilation procedure, the wavelet transform is divided into the continuous and
discrete types. In the continuous wavel et transform, the mother wavelet is dilated
continuoudly over the time axis such that the family of analyzing wavelet forms an over-

complete basisin L?(R) (it is a Hilbert space where every signal has afinite energy,
¥

defined as (x(t), x(t)) = c‘jx(t)|2dt <¥ ). On the other hand, the mother wavelet in the
-¥

discrete wavelet transform is dilated discretely. In other words, the dilation or scaling
parameter a for the continuous wavelet transform varies continuoudly; wheress, in the
discrete case, the scaling parameter a varies discretely. Figure 4 illustrates the pictorial
representation of the continuous and discrete wavelet transforms. One can think the
dilation or scaling parameter as aknob in aradio. If the knob turns continuoudly to any
position, then it is a continuous wavel et transform. If it turns only to certain predefined
positions, then it is a discrete wavelet transform.
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Figure 4. The difference between (a) continuous and (b) discrete wavelet transforms. The “knob” (i.e.,
dilation parameter a) in the continuous one turns to any position, whereas the discrete one turnsto a
certain predefined position only.

The wavelet in Eq.(5) isavalid expression for continuous wavelets because al R. For a
discrete wavelet, agiven wavelet is discretized in aandt |, by selecting a = a;' and

t =nt,al, where a,and t, are fixed constants with a, >1, t, >0, mnT1 Z, and Zisa
set of integer. Then, the discretized wavelet becomes

w2 &- ntyago
Y o =lao Ty g T G
0

The discrete wavelet transform is then given by
¥

DWT, (a,t) = (LY ma (bt .

Within the discrete wavelet transform family, there are several other types such asthe
well- known orthonormal -dyadic wavel et transforms, bi-orthogonal wavelet transforms,
spline wavelets, and so on. Although they are different kind of wavelet transforms, their
fundamental properties are identical. However, their implementations may be quite
different.

Avid readers can extend their reading on wavelet transforms for a more complete

coverage. Three excellent overview of the wavelet transform from the signal processing
and mathematical point of view [1,2,3] are given below.
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6. Applicationsin Power Systems and Conclusion.

From the above presentation of wavelet transforms, it should be clear that the principal
application of wavelet transforms will be in transient analysis. Wavelet transforms possess
beautiful properties that are suitable for such applications. Transformation kernels of the
wavelet transform are multi-resolution because it is based on dilation. Thus, the wavelet
transform possesses a high time resolution when the wavelet is narrow in the time.
However, the wavelet transform also possesses a high frequency resolution when the
wavelet is dilated in the time domain.

Along thisline, several papers have been published in this subject. The potential
applications in power system transients were proposed in [4,6]. The application of
waveletsin power distribution relaying is studied in [7]. The use of the wavelet transform
in detecting power quality events and compressing power quality data are detailed in [5,8]
respectively. Automatic power quality event identification using the wavelet transform
and artificial neural network are proposed and implemented in [9].

Future potential application in power systems may include transient analysis, time-varying
harmonics, and fault location detector, and so on. The wavelet transformisa
complementary signal analysis tool to analyze non-stationary signals, and, thus, it is not
intended to replace well-established techniques such as the Fourier transform in analyzing
stationary signals. The wavelet transform has presented itself as a new technique that is
useful in power systems, especially in the transient and power quality analysis. It will
continue and become an important tool in analyzing suitable problemsin power systems.
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